Nanoconfined NaAlH4: prolific effects from increased surface area and pore volume.
نویسندگان
چکیده
Nanoconfinement is a promising technique to improve the properties of nanomaterials such as the kinetics for hydrogen release and uptake and the stability during cycling. Here we present a systematic study of nanoconfined NaAlH4 in nanoporous scaffolds with increasing surface area and pore volume and almost constant pore sizes in the range of 8 to 11 nm. A resorcinol formaldehyde carbon aerogel was CO2-activated under different conditions and provided aerogels with BET surface areas of 704, 1267 and 2246 m(2) g(-1) and total pore volumes of 0.91, 1.30 and 2.21 mL g(-1), respectively. Nanoconfinement of NaAlH4 was achieved by melt infiltration and (27)Al MAS NMR reveals that the respective scaffolds incorporate 68, 82 and 91 wt% NaAlH4, for the above-mentioned samples, while the remaining fraction decomposes to metallic Al indicating that increasing CO2-activation tends to facilitate the infiltration process. The frequencies for the (23)Na and (27)Al MAS NMR centerband resonances from NaAlH4 vary systematically for the infiltrated samples and are shifted towards higher frequency and become more narrow with increasing degree of CO2 activation of the scaffolds. This new effect is attributed to increasing interactions with conduction electrons from increasingly graphite-/graphene-like scaffolds. The bulk versus nanoconfined ratio of NaAlH4 was investigated using Rietveld refinement, revealing that the majority of added NaAlH4 is confined inside the nanopores. The hydrogen desorption kinetics decreased with increasing surface area and the hydrogen storage capacity is more stable and decreases less during continuous hydrogen release and uptake cycles. In fact, the available amount of hydrogen (2.7 wt% H2) was more than doubled compared to the nanoconfinement in the non-activated carbon aerogel (1.3 wt% H2). Furthermore, it was demonstrated that Ti-functionalization of the CO2-activated aerogels combines the high storage capacity with fast hydrogen release kinetics from NaAlH4 which fully decomposes into Na3AlH6 at T ≤ 100 °C.
منابع مشابه
Toward a facile synthesis of spherical sub-micron mesoporous silica: Effect of surfactant concentration
In this paper, a facile method for preparing sub-micron spherical mesoporous silica by the sol-gel process and cationic surfactant cetyltrimethylammonium bromide (CTAB) as a soft template was reported. Moreover, the effect of surfactant concentration on the specific surface area and the total pore volume was investigated. The specific surface area, pore characteristic, morphology, chemical comp...
متن کاملCorrosion Properties of 70SiO2-15TiO2-15ZrO2 Ceramic Membrane
The 70SiO2-15TiO2-15ZrO2 membrane was prepared by a sol-gel procedure. The corrosion behavior of microporous toplayers along with the membrane characterization in terms of pore size, surface area, pore volume and weight loss is described. The final ceramic membrane with a thickness of 400 nm and uniform surface was obtained. This membrane confirmed the fine microporous characteristic with mean ...
متن کاملEffects of ultrasound on properties of ni-metal organic framework nanostructures
Objective(s): According to the unique properties of magnetic nanoparticles, Nickel Metal-Organic Frameworks (MOF) was synthesized successfully by ultrasound irradiation. Metal-organic frameworks (MOFs) are organic–inorganic hybrid extended networks that are constructed via covalent linkages between metal ions/metal clusters and organic ligands called a linker. Materials and Methods: The nanopar...
متن کاملChemical Modification of Activated Carbon and Its Application for Solid Phase Extraction of Copper(II) and Iron(III) Ions
Powder activated carbon surface (AC) was grinded and modified and altered procedure thorough a facile and easy chemical reaction to appearance of 2-((3silylpropylimino)1-methyl) phenol (AC- (SPIMP)). Subsequently, this novel sorbent efficiently applied for the extraction and preconcentration of some metal ions from real samples. Preliminary the influences of variables such as pH, amounts of rea...
متن کاملEnhanced hydrogen storage properties of NaAlH4 co-catalysed with niobium fluoride and single-walled carbon nanotubes
The effects of single-walled carbon nanotubes (SWCNTs) as a co-catalyst with NbF5 on the dehydrogenation and hydrogenation kinetics of NaAlH4 were investigated by X-ray diffraction, Fourier transform infrared spectroscopy, differential thermal analysis, temperature-programmed desorption, and isothermal hydrogen ab/desorption techniques. It has been revealed that there is a synergistic effect of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 6 1 شماره
صفحات -
تاریخ انتشار 2014